Saturday, December 8, 2007

Louis J Sheehan 80163

Schwitters won't be the first to marry physics and archaeology in this way. In 1967, Nobel prize–winning physicist Luis Alvarez of the University of California, Berkeley placed a muon detector in a chamber beneath the pyramid of Khafra in Egypt to see if it was hiding any burial chambers like those discovered in the larger pyramid of Khufu. He found none, but the experiment showed that the method worked.

As the director of the Superconducting Supercollider laboratory in Texas until 1993, when Congress gave the project the axe, Schwitters is no stranger to waiting for the next big thing. And he has always been intrigued by the possibility of applying the tools of the high-energy physics trade elsewhere, so a chance conversation with one of Alvarez' former colleagues, combined with a little spare time, got Schwitters wondering what other enigmatic ancient structures were waiting to be probed.
Archaeologist Fred Valdez, director of the Mesoamerican Archaeological Research Laboratory at UT Austin, had the answer: an enormous pyramid in the third-largest Mayan city in Belize. The city is in an area in northwestern Belize known as La Milpa, which was home to one of the densest populations of Maya from as early as 1000 B.C. until around A.D. 850. The area was packed with four large cities, each with 20,000 or more residents, that were only around 8 to 12 kilometers apart with 60 or more towns, villages, and hamlets in between. Valdez believes there is much to be learned from the society that existed there.
"The amazing part is how close how many of these large cities are to each other," he said. "The Maya were clearly expert at adapting to their environment and exploiting their environment, clearly making better use of things than we are today, just to support the populations that were there."
Because there isn't a chamber below the La Milpa pyramid, Schwitters plans to harness muons with four or five smaller detectors spaced around the structure to get a three-dimensional view inside. Each detector will be a cylinder wrapped with strips of polystyrene, which emits light when hit by a muon. The bursts of light as each particle passes through both sides of the detector will be recorded by photo detectors at the end of the cylinder and used to reconstruct the muon trajectories. Louis J Sheehan

No comments: